

Green Infrastructure Champion Workshop: Designing Rain Gardens for Property Owners

Long Branch, NJ September 30, 2025

Christopher C. Obropta, Ph.D., P.E., Extension Specialist in Water Resources obropta@envsci.rutgers.edu and

Hollie DiMuro, Senior Program Administrator Supervisor hollie.dimuro@rutgers.edu

AGENDA

- 1. Introduction and review of program objective
- 2. Review of rain garden educational presentation
- 3. Instruction on how to deliver an in-person technical design workshop
 - a) Select rain garden location
 - b) Determine rain garden drainage area
 - c) Web soil survey
 - d) Rain garden sizing
 - e) Plant information
 - f) Sample designs
 - g) Maintenance guide
- 4. Discuss advertising workshop
- 5. Questions?

Program Objective

Train Green Infrastructure Champions on how to design rain garden for property owners

How do we get property owners wanting a rain garden?

- 1. Education people on what a rain garden is and why they are important
- 2. Emphasize personal responsibility doing your part to save the planet

Who is our target audience?

- 1. Environmental Commissioners, Green Team Members, and Shade Tree Commissioners
- 2. Environmentally Conscientious Property Owners
- 3. School Teachers and Principals
- 4. Youth Groups

How do we educate them?

- Rain Garden Commercial video and/or PowerPoint (15 minutes)
- 2. Rain Educational PowerPoint Presentation (45 minutes)
- 3. Rain Garden Design Session (45 minutes)

What tools do we have to help?

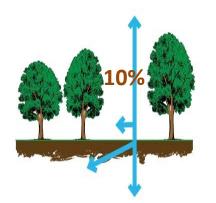
- 1. Rain Garden Design Manual
- 2. Rain Garden App
- 3. Rain Garden Templates (we'll show you later)
- 4. AmeriCorps Watershed Ambassadors
- 5. RCE County Agents
- 6. RCE Water Resources Program

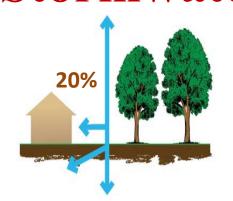
Rain Garden PowerPoint Presentation

What happens to the rain in our watersheds?

What is stormwater?

Stormwater is the water from rain or melting snows that can become "runoff," flowing over the ground surface and returning to lakes and streams.


Examples of Nonpoint Source Pollution

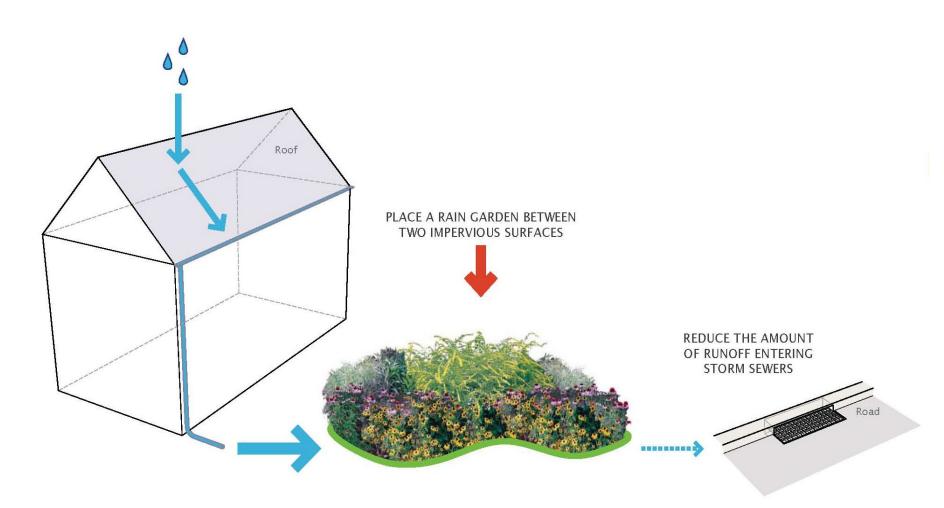

- Oil and grease from cars
- Fertilizers
- Animal waste
- Grass clippings
- Septic systems

- Sewage leaks
- Household cleaning products
- Litter
- Agriculture
- Sediment

The Impact of Development on Stormwater Runoff

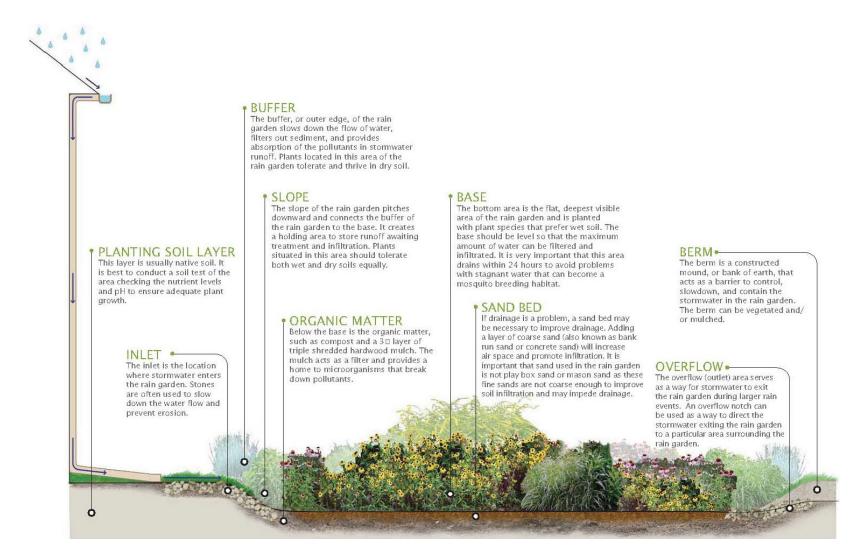
more development

More impervious surfaces


more stormwater runoff

Connected or Disconnected?

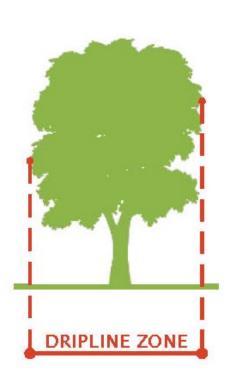
The Solution...


Rain Gardens

A rain garden is a landscaped, shallow depression that is designed to intercept, treat, and infiltrate stormwater at the source before it becomes runoff. The plants used in the rain garden are native to the region and help retain pollutants that could otherwise harm nearby waterways.

PARTS OF A RAIN GARDEN

SITE SELECTION & DESIGN


PLANNING YOUR RAIN GARDEN

SITE SELECTION

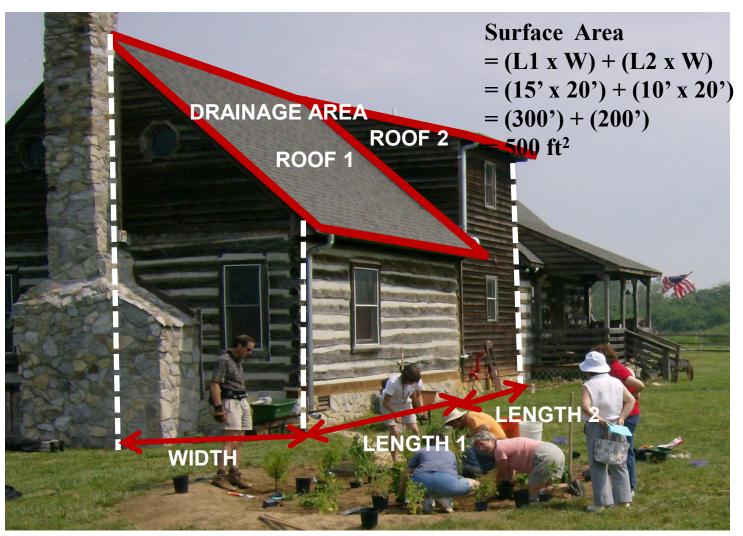
- 1. Next to a building with a basement, rain garden should be located min. 10' from building; no basement: 2' from building
- 2. Do not place rain garden within 25' of a septic system
- 3. Do not situate rain garden in soggy places where water already ponds
- 4. Avoid seasonably-high water tables within 2' of rain garden depth
- 5. Consider flat areas first easier digging
- 6. Avoid placing rain garden within dripline of trees
- 7. Provide adequate space for rain garden

CALL BEFORE YOU DIG

LOCATE YOUR UTILITY LINES!

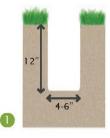
Call BEFORE You Dig!

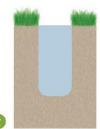
NJ One Call 1-800-272-1000

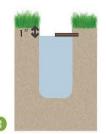

The different colors of the markout flags represent specific utilities.

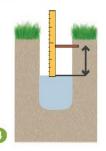
- **ELECTRIC**
- GAS, OIL, STEAM
- COMMUNICATIONS,
- WATER
- SEWER

- NJ One Call: 1-800-272-1000
- Free markout of underground gas, water, sewer, cable, telephone, and electric utility lines
- Call at least 3 full working days, but not more than 10 days, prior to planned installation date
- Do not place rain garden within 5' horizontally and 1' vertically from any utilities


p. 20


DRAINAGE AREA CALCULATION





CHECK YOUR SOIL

- Infiltration/Percolation Test
 - 1. Dig a hole in the proposed rain garden site (12" deep, 4-6" wide)
 - 2. Fill with water to saturate soil and then let stand until all the water has drained into the soil
 - 3. Once water has drained, refill the empty hole again with water so that the water level is about 1" from the top of the hole
 - 4. Check depth of water with a ruler every hour for at least 4 hours
 - 5. Calculate how many inches of water drained per hour

DETERMINING THE DEPTH *****OF THE RAIN GARDEN

6" DEEP RAIN GARDEN - NO SOIL AMENDMENTS

3" DEEP RAIN GARDEN - SOIL AMENDMENTS

- Depth of rain garden is dependent upon the soil texture found at the site of the rain garden
- Depth is usually 3-8 inches

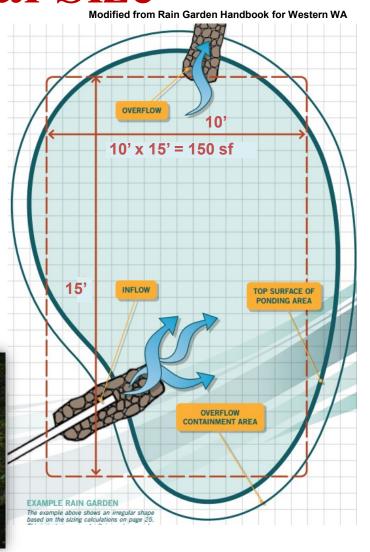
DETERMINING THE SIZE OF THE RAIN GARDEN

• The size of the rain garden is dependent upon the amount of runoff entering the rain garden

Rain Garden Sizing Table

Based on New Jersey's Water Quality Design Storm (1.25" of rain over 2 hours)

Drainage Area	Size of 3" Deep Rain Garden CLAY SOIL*	Size of 6" Deep Rain Garden SILTY SOIL	Size of 8" Deep Rain Garden SANDY SOIL
500 ft ²	200 ft ²	100 ft ²	75 ft ²
750 ft ²	350 ft ²	150 ft ²	112 ft ²
1,000 ft ²	400 ft ²	200 ft ²	149 ft ²
1,500 ft ²	600 ft ²	300 ft ²	224 ft²
2,000 ft ²	800 ft ²	400 ft ²	299 ft ²


*SOIL TEXTURE AMENDMENTS NEEDED

RAIN GARDENS Typical Size

What is a typical rain garden size?

• Typically100-200 square feet.

• A 100 square feet rain garden will often receive water from an area 5 to 10 times larger than the rain garden..

SOIL AMENDMENTS

• Soil amendments improve the rain garden's infiltration rate and help the plants grow

DETERMINING THE INLET AND OVERFLOW

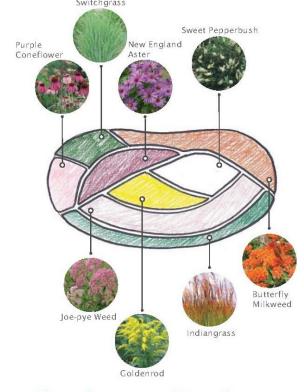
p. 2

- Stormwater runoff enters the rain garden from an inlet
- Stormwater exits through the **overflow**

PREVENTING EROSION

- Slope no greater than 3:1
- Slow down velocity of water flowing through rain garden
 - Add rocks to inlet area (River Stone)

DETERMINING MULCH QUANTITY


- Allow for a 3" depth mulch (triple-shredded hardwood with no dye) to be spread throughout the entire rain garden
- Every 100 square feet of rain garden needs 1 cubic yards (3" depth)

RAIN GARDEN DESIGN

SHAPING YOUR RAIN GARDEN

- Use a garden hose or rope to outline the desired shape of your rain garden on the ground
- Many rain gardens are in the shape of a circle or kidney bean, but your rain garden can take on whatever shape you prefer

Butterfly Habitat Rain Garden: Planting Plan

THE FUN PART!

INSTALLING YOUR RAIN GARDEN

STEP ONE

• Delineate rain garden area

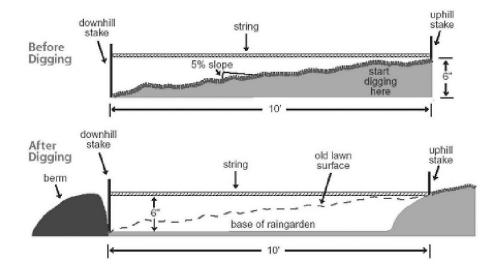
Remove existing grass with a shovel or machinery

STEP TWO

• Excavate to design depth based on necessary storage and soil amendment requirements

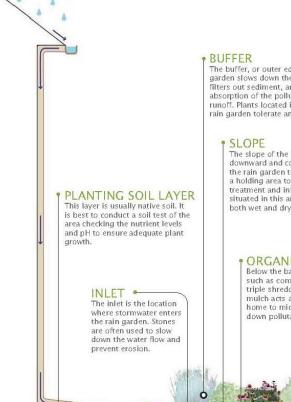
STEP THREE

• Add soil amendments, if necessary


- Combine amendments with existing soil using shovels or rototiller
- Loosen and prepare soil for grading and planting

STEP FOUR

• Prepare the berm, if necessary



STEP FIVE

Prepare the overflow

The buffer, or outer edge, of the rain garden slows down the flow of water, filters out sediment, and provides absorption of the pollutants in stomwater runoff. Plants located in this area of the rain garden tolerate and thrive in dry soil.

> The slope of the rain garden pitches downward and connects the buffer of the rain garden to the base. It creates a holding area to store runoff awaiting treatment and infiltration. Plants situated in this area should tolerate both wet and dry soils equally.

ORGANIC MATTER

Below the base is the organic matter, such as compost and a 3 I layer of triple shredded hardwood mulch. The mulch acts as a filter and provides a home to microorganisms that break down pollutants.

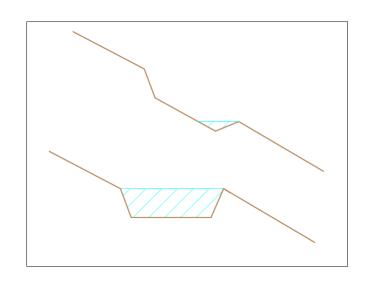
* BASE

The bottom area is the flat, deepest visible area of the rain garden and is planted with plant species that prefer wet soil. The base should be level so that the maximum amount of water can be filtered and infiltrated. It is very important that this area drains within 24 hours to avoid problems with stagnant water that can become a mosquito breeding habitat.

SAND BED

If drainage is a problem, a sand bed may be necessary to improve drainage. Adding a layer of coarse sand (also known as bank run sand or concrete sand) will increase air space and promote infiltration. It is important that sand used in the rain garden is not play box sand or mason sand as these fine sands are not coarse enough to improve soil infiltration and may impede drainage.

BERM -


The berm is a constructed mound, or bank of earth, that acts as a barrier to control, slowdown, and contain the stormwater in the rain garden. The berm can be vegetated and/ or mulched.

OVERFLOW .-

The overflow (outlet) area serves as a way for stormwater to exit the rain garden during larger rain events. An overflow notch can be used as a way to direct the stormwater exiting the rain garden to a particular area surrounding the

STEP SIX

• Level the rain garden base

STEP SEVEN

• Plant native species

STEP EIGHT

Apply mulch

- Allow for a 3" depth mulch (triple-shredded hardwood with no dye) to be spread throughout the entire rain garden
- For every 100 square feet of rain garden, you will need about 1 cubic yard of mulch (3" depth)

STEP NINE

Water Plants

STEP TEN

• Appreciate a job well done

RAIN GARDEN PLANTING DESIGN

DESIGN AESTHETICS

- Formal or traditional design
 - Shrub bed
 - Perennial garden
 - Hedges
- Naturalized planting & design
 - Butterfly garden
 - Meadow (warm season grasses & wildflowers)
 - Buffer plantings

SITE CONSTRAINTS

- Sun vs. shade
- Exposure/wind
- Soil characteristics
- Hydrologic conditions
- Road salts
- Vehicle/pedestrian traffic

PLANTS IN THE RIGHT PLACE...

Courtesy of Pinelands Nursery & Supply

PLANTING DESIGN: Wet + Dry Conditions

SELECTING PLANT SPECIES

- Mature plant size
 - Proximity to buildings and utility lines
 - Pruning and shaping
- Seasonal interest
 - Flowers
 - Fall color
 - Winter character
- Beneficial wildlife
 - Flowers for butterflies
 - Fruits for song birds

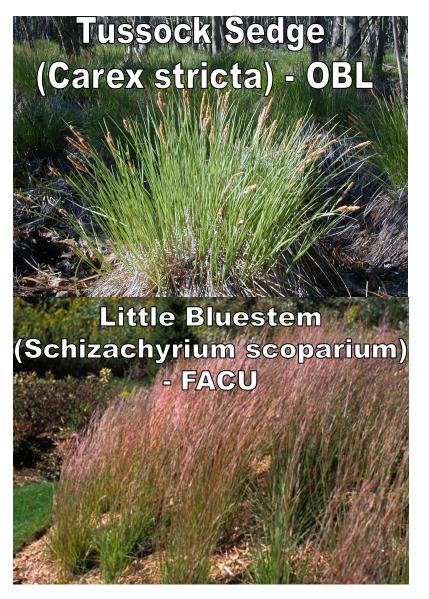
GRASSES & GROUND COVERS

BUFFER

- Broomsedge
- Bearberry
- Panic grass
- Switchgrass
- Little bluestem
- Indiangrass

BASE

- Big bluestem
- Virginia wild-rye
- Switchgrass
- Wool grass


SLOPE

- Bluejoint grass
- Sedges
- Fowl mannagrass
- Softrush

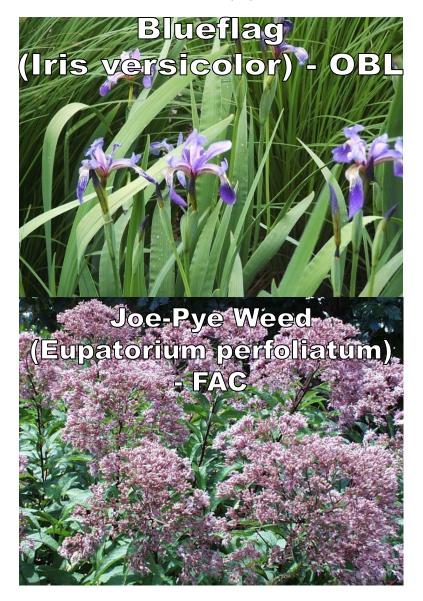
GRASSES & GROUND COVERS

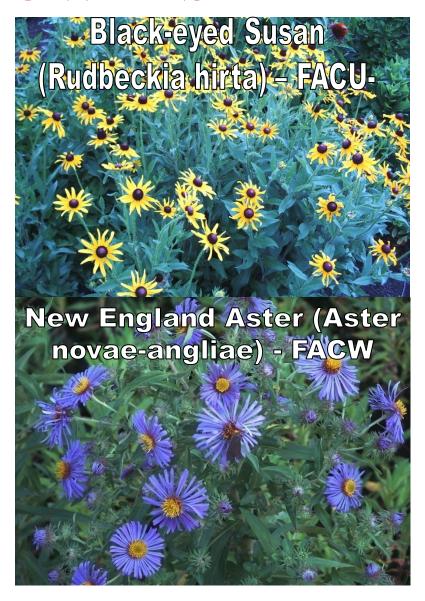
WILDFLOWERS & FERNS

BUFFER

- Butterfly milkweed
- Wild indigo
- Purple coneflower
- Beebalm
- Black-eyed susan

BASE


- New England aster
- New York aster
- Columbine
- Coreopsis
- Joe-pye weed
- Blazing star
- Sensitive fern
- Cinnamon fern
- Ironweed


SLOPE

- Swamp milkweed
- Marsh marigold
- Turtlehead
- Boneset
- Rosemallow/hibiscus
- Blueflag iris
- Cardinal flower
- Blue lobelia

WILDFLOWERS

TREES & SHRUBS

UPL FACU FAC FACW OBL

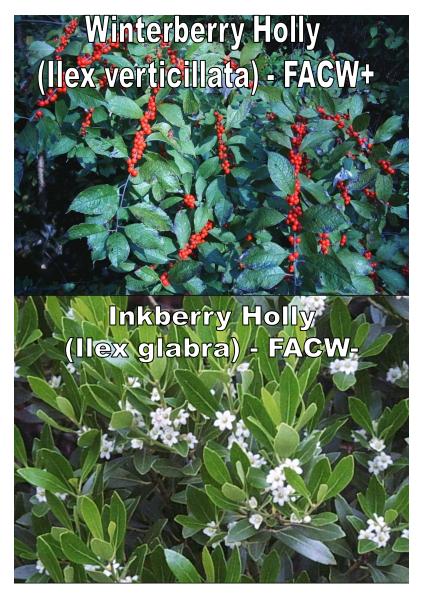
DRY WET

BUFFER

- Hackberry
- Red Bud
- Pepperbush
- American Holly
- Bayberry
- Witchhazel
- White Oak
- Red Oak
- Arrowwood Viburnum

BASE

- Red Maple
- Service Berry
- River Birch
- Silky Dogwood
- Red-twig Dogwood
- Inkberry Holly
- Winterberry
- Sweetbay Magnolia


SLOPE

- River Birch
- Buttonbush
- Silky Dogwood
- Green Ash
- Swamp White Oak
- Pin Oak
- CranberrybushViburnum

TREES & SHRUBS

INSPECTION AND MAINTENANCE

MAINTAINING YOUR RAIN GARDEN

MAINTENANCE MEASURES

WEEKLY TASKS:

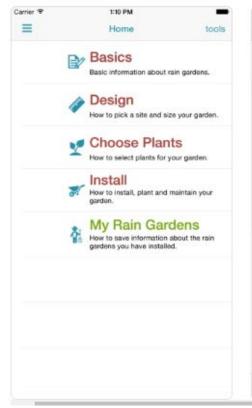
- 1. Watering
- 2. Weeding
- 3. Inspecting

ANNUAL TASKS:

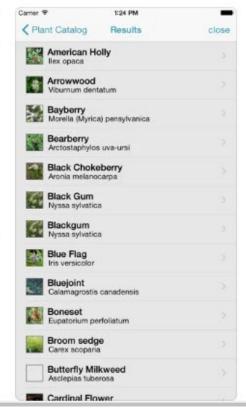
- 1. Mulching
- 2. Pruning
- 3. Re-planting
- 4. Removing sediment
- 5. Soil Testing
- 6. Harvesting Plants
- 7. Cleaning of Gutters
- 8. Replacing materials (stone, landscape fabric)

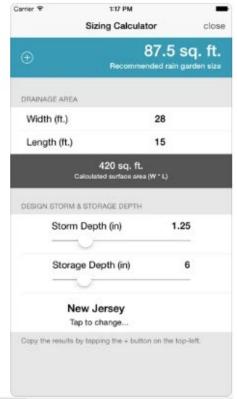
http://water.rutgers.edu/Rain Gardens/RGWebsite/rginfo.html

Rain Garden 4+


University of Connecticut

Designed for iPhone


*** * * 2.6 • 11 Ratings

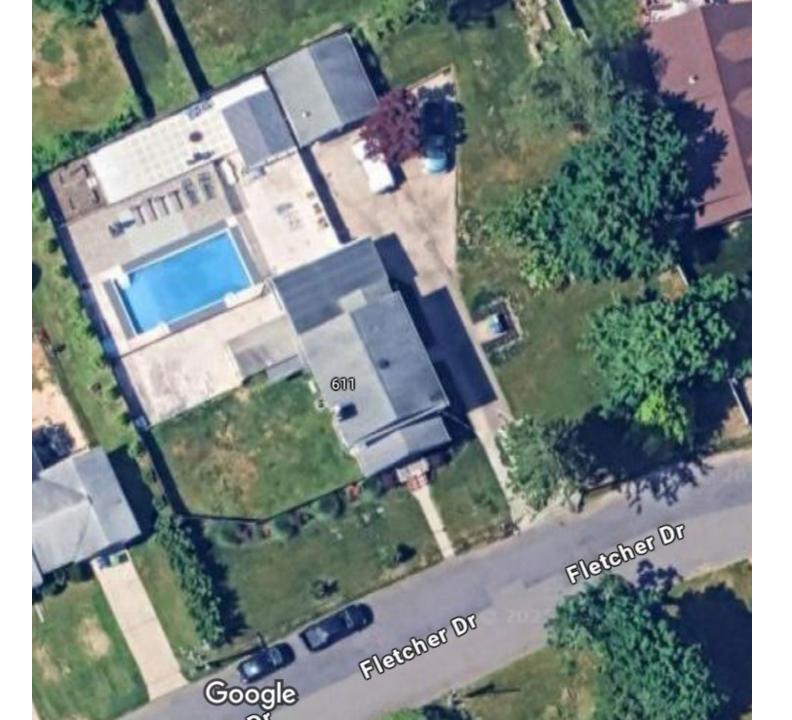

Free

iPhone Screenshots

The design session will be held on			
	from	to	Contact your
local Green Infrastructure Champion to sign up to get			
yo	our free rain	garden d	lesign.

Josephine Smith, GI Champion JSmith999@aol.com

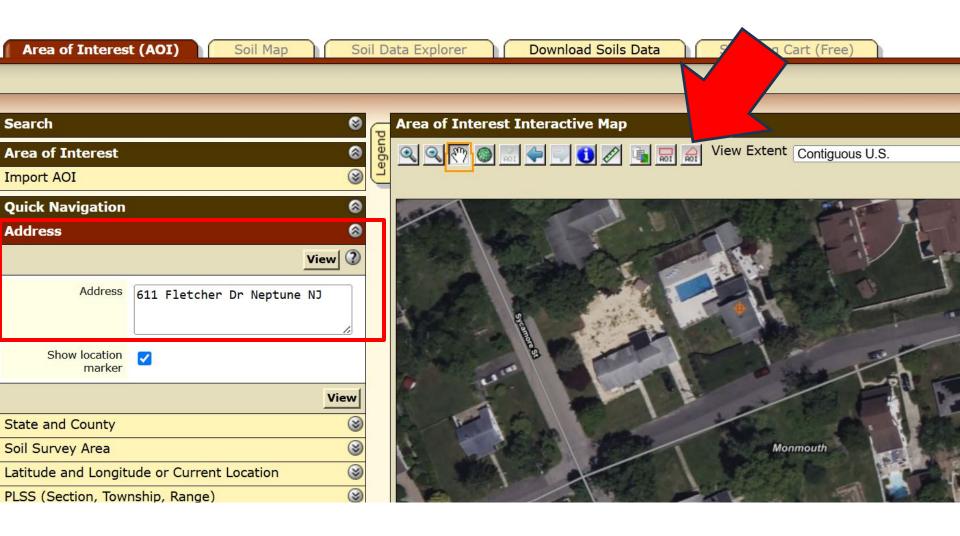
Rain Garden Design Session

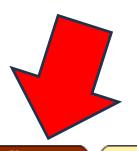


Materials available sample designs

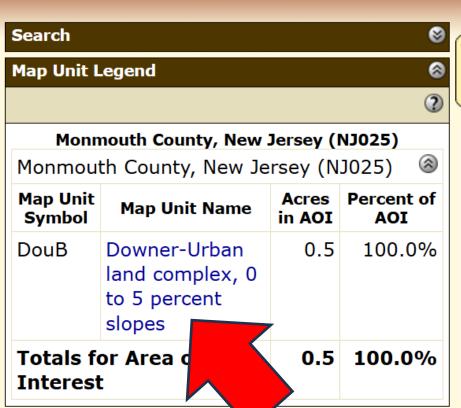
- 1. Posterboard of sample designs are available for each GI Champion that hosts a workshop (12 posters)
- 2. Rain garden manual will be provided
- 3. Homeowner rain garden throughout the years PowerPoint presentation and booklet will be provided
- 4. Plant fact sheet books will be provided
- 5. Green infrastructure guidance manual will be provided

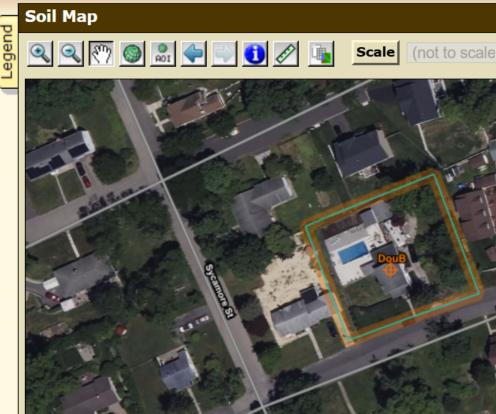
Steps to developing a design

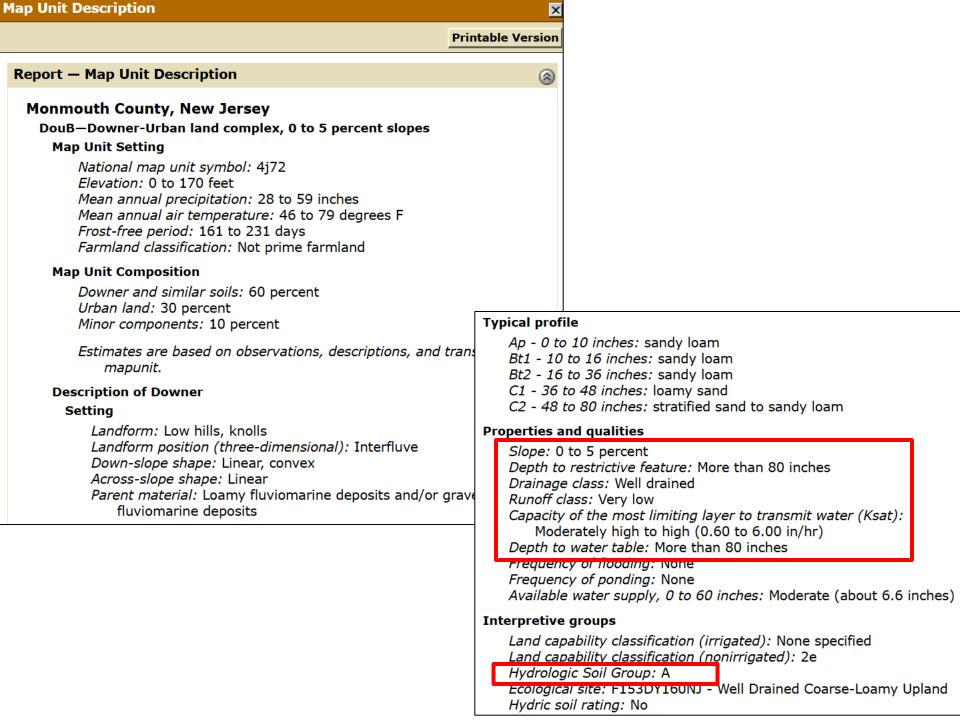

- 1. Ask homeowner where they want the garden (google maps can be used to view the home to determine if this is an appropriate location)
- 2. Determine the area that would drain to the garden (google maps' measure tool can be used to calculate the drainage area)
- 3. Use Web soil survey to identify soil type and infiltration test data to determine if the soils drain

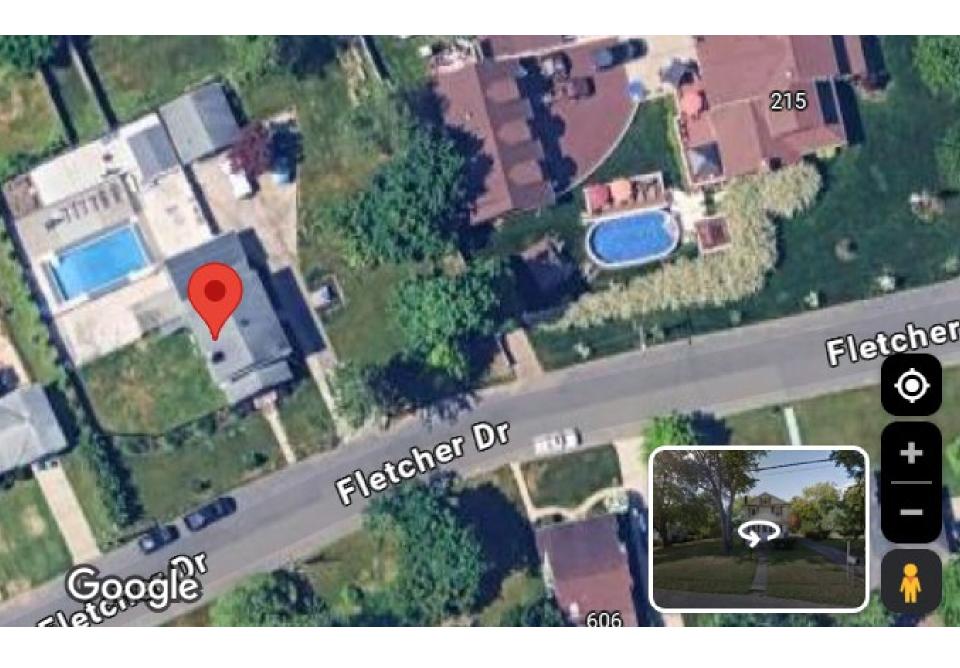

https://websoilsurvey.nrcs.usda.gov/app/

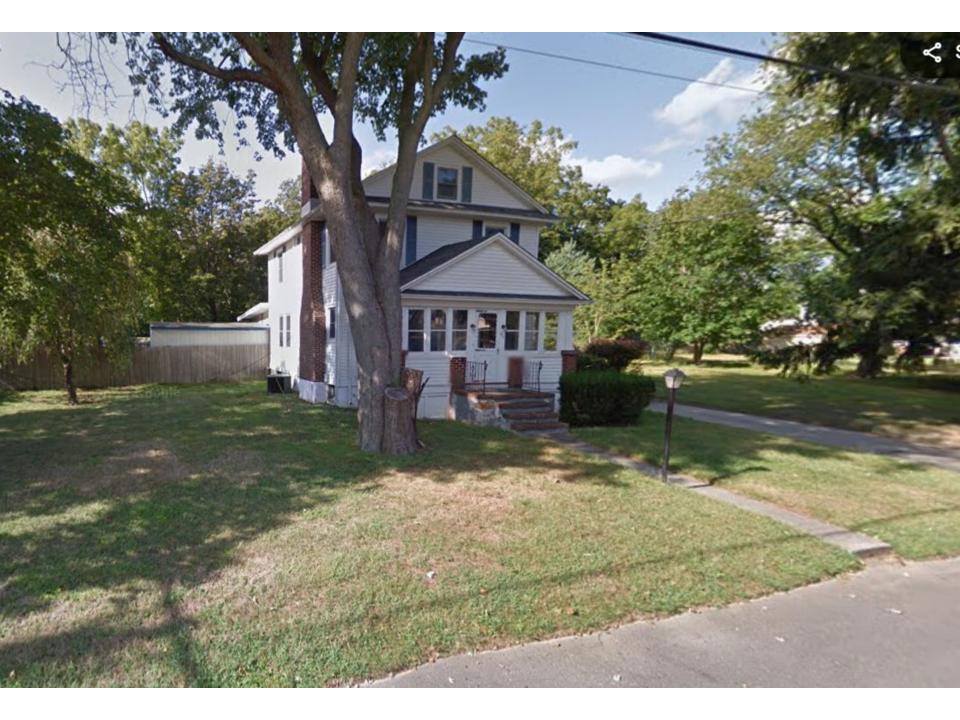
websoilsurvey.nrcs.usda.gov/app/

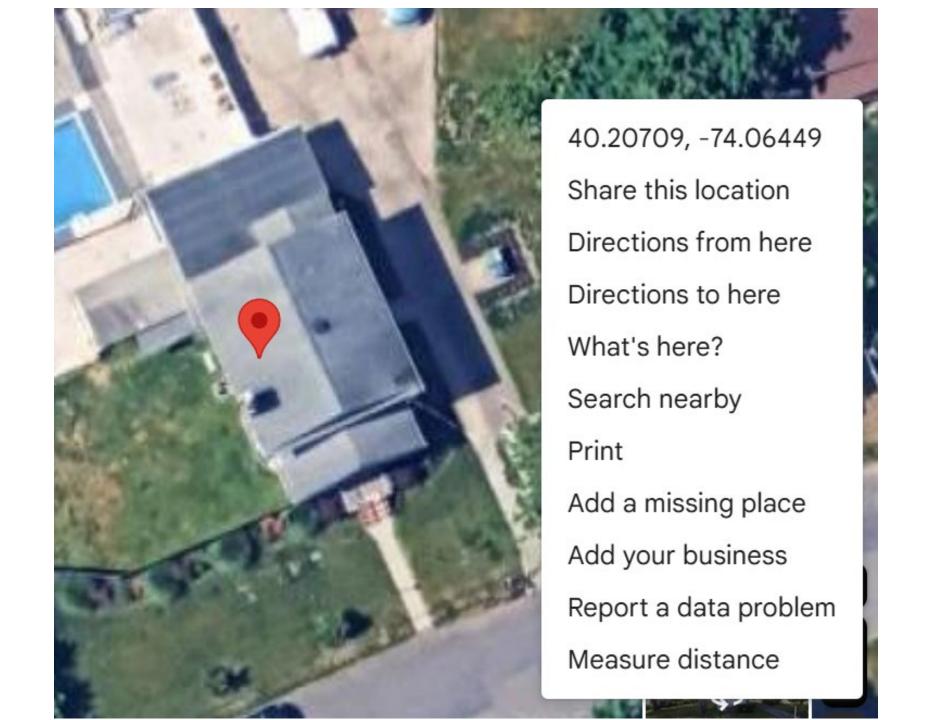

Area of Interest (AOI)


Soil Map


Soil Data Explorer


Download Soils Data


Shopping



Steps to developing a design

- 1. Select a rainfall total for the design
- 2. Use residential rain garden design form to determine rain garden size or
- 3. Use the spreadsheet to determine size of rain garden
- 4. If soil amendments are needed, use the spreadsheet to calculate quantities
- 5. Add dimensions to the rain garden cross-section of the rain garden design form

Steps to developing a design

2. Complete rain garden design program form

Date:	
Time:	

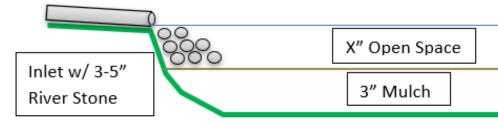
Residential Rain Garden Design Program

Name:	Address:
Impervious Cover Calculation:	Property Soil Type:
Rain Garden Size:	Amendments (if necessary):
Notes:	

For Reference:

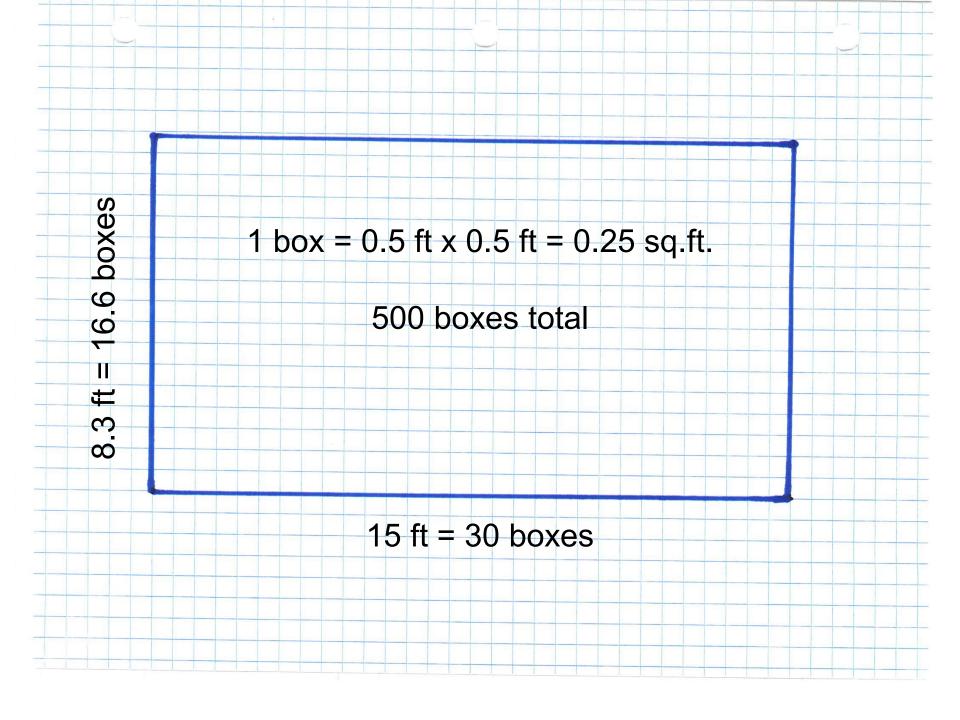
Depth (Soils)	Rainfall	Drainage Area (SF)								
Depth (Solis)	Namian	100	200	300	400	500	750	1000		
27 (Clavi)	1.25"	40 SF	85 SF	125 SF	165 SF	210 SF	315 SF	415 SF		
3" (Clay)	1.5"	50 SF	100 SF	150 SF	200 SF	250 SF	375 SF	500 SF		
en reus Danna	1.25"	20 SF	40 SF	65 SF	85 SF	105 SF	155 SF	210 SF		
6" (Silt/Loam)	1.5"	25 SF	50 SF	75 SF	100 SF	125 SF	190 SF	250 SF		
O" (Cond)	1.25"	15 SF	30 SF	45 SF	65 SF	80 SF	115 SF	155 SF		
8" (Sand)	1.5"	20 SF	40 SF	55 SF	75 SF	95 SF	140 SF	190 SF		

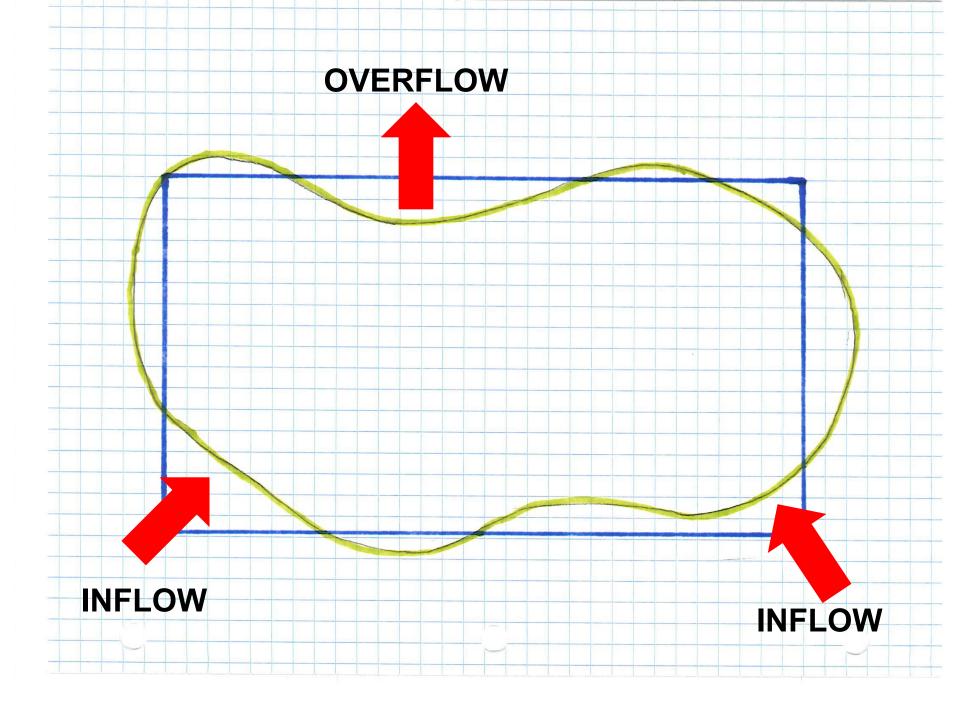
Date:	
Time:	



Residential Rain Garden Design Program

Name:	Address:
Impervious Cover Calculation:	Property Soil Type:
Rain Garden Size:	Amendments (if necessary):
Notes:	


Berm & Overflow w/ 3-5" River Stone



For Reference:

Depth (Soils)	Rainfall	Drainage Area (SF)							
Deptii (30iis)	Naiiliaii	100	200	300	400	500	750	1000	
3" (Clay)	1.25"	40 SF	85 SF	125 SF	165 SF	210 SF	315 SF	415 SF	
5 (Clay)	1.5"	50 SF	100 SF	150 SF	200 SF	250 SF	375 SF	500 SF	
6" (Silt/Loam)	1.25"	20 SF	40 SF	65 SF	85 SF	105 SF	155 SF	210 SF	
6" (Silt/Loam)	1.5"	25 SF	50 SF	75 SF	100 SF	125 SF	190 SF	250 SF	
0" (Cand)	1.25"	15 SF	30 SF	45 SF	65 SF	80 SF	115 SF	155 SF	
8" (Sand)	1.5"	20 SF	40 SF	55 SF	75 SF	95 SF	140 SF	190 SF	

Donth (Soils)	Rainfall	Drainage Area (SF)							
Depth (Soils)		100	200	300	400	500	750	1000	
2" (Clay)	1.25"	40 SF	85 SF	125 SF	165 SF	210 SF	315 SF	415 SF	
3" (Clay)	1.5"	50 SF	100 SF	150 SF	200 SF	250 SF	375 SF	500 SF	
6" (Silt/Loam)	1.25"	20 SF	40 SF	65 SF	85 SF	105 SF	155 SF	210 SF	
	1.5"	25 SF	50 SF	75 SF	100 SF	125 SF	190 SF	250 SF	
8" (Sand)	1.25"	15 SF	30 SF	45 SF	65 SF	80 SF	115 SF	155 SF	
	1.5"	20 SF	40 SF	55 SF	75 SF	95 SF	140 SF	190 SF	

Input Cells		
Calculated Cells		
Name		
Address		
Drainage Area Size	0	
Dain Cardon Sizing	WQ (Min) 1.25"	Suggested 1.5"

Let's go to the Excel Spreadsheet!

Width	#DIV/0!	FT
Mulch	0.00	CY
	0.0	Bags
Soil Amendments (clay soils)		
Depth of amendments	0.25	FT
bioretention media	0.0	CY
sand	0.0	CY
	0.0	Bags*
compost	0.0	CY
	0.0	Bags*
*Bags @ 2 CF/Bag		

Steps to developing a design

- 6. Use the spreadsheet to determine amount of mulch needed (1 cubic yard per 100 sq.ft. of rain garden)
- 7. Review piping needed to get water from impervious surface to rain garden
- 8. Discuss stone inlet/outlet/border

Steps to developing a design

- 9. Discuss with homeowner planting style
 - a) Manicured or Natural
 - i. All shrubs
 - ii. Perennial and shrubs
 - iii. Deer tolerant
 - iv. Shade
 - v. All perennial
 - vi. Salt tolerant

Let's Review Design Samples

Manicured or Natural

- i. All shrubs
- ii. Perennial and shrubs
- iii. Deer tolerant
- iv. Shade
- v. All perennial
- vi. Salt tolerant

Maintenance

Weekly:

- 1. Watering
- 2. Weeding
- 3. Inspecting

Annual:

- 1. Mulching
- 2. Pruning
- 3. Re-planting
- 4. Removing sediment
- 5. Soil Testing
- 6. Harvesting Plants
- 7. Cleaning of Gutters
- 8. Replacing materials (stone, landscape fabric)

Maintenance Guide

(all available on the RCE Website)

- 1. General guide
- 2. One-pager

Questions

Next: Hands on Activity

- Break out into 2-3 groups
- Each group will be given an address to design a rain garden for the property
- Chris and Hollie will come around to answer questions